亚洲精品成人久久久,亚洲一区二区三区无码久久,日韩人妻无码精品久久,亚洲AV无码专区亚洲AV桃

歡迎光臨金湖凱銘儀表有限公司!本公司主營:渦輪流量計,電磁流量計,渦街流量計,孔板流量計,金屬管浮子流量計,磁翻板液位計等儀器儀表,聯系熱線:15195518515

金湖凱銘儀表有限公司LOGO

金湖凱銘儀表有限公司

品質保證,服務周到,儀器儀表供應商

--24小時服務熱線--15195518515
當前位置:*頁>>新聞資訊>>渦輪流量計渦輪旋轉及顯示儀表工作原理的分析

渦輪流量計渦輪旋轉及顯示儀表工作原理的分析

發(fā)布時間:2020-08-29 07:09:47??點擊次數:1863次
摘要:渦輪流量計是一種能夠測量多種介質且穩(wěn)定性好、準確度高的計量儀表。特別適宜于計量粘度不高的輕質油類和腐蝕性不大的酸堿性液體,同時它也具有較好的線性輸出參數,當渦輪流量計與具有多功能、多參數的顯示儀表組合為計量儀表時,就能夠對被測物理量的累積流量、瞬時流量等進行準確計量。通過對渦輪流量計及顯示儀表工作原理的分析,可以掌握在實際使用中對多種參數的選擇、調節(jié)、設定,大大提高計量準確性。
低溫渦輪流量計(以下簡稱流量計)是以流體動量矩原理為基礎的流量計量儀表。有些科技文獻又將其劃分為速度式儀表,因為在一定的流量范圍內,流量計的轉動速度與流體的流速成比例關系。
流量計使用中的主要特點:體積??;重量輕;準確度高(有的流量計可以當作計量標準儀表);反應時間快(有些可達到毫秒級);量程比寬(一般為10∶1);壓力損失??;適用工作流體溫度高;輸出為脈沖信號,故不易受到干擾;可以長距離傳輸,便于各種參數處理。當它與多功能、多參數的顯示儀表(以下簡稱儀表)組合使用時,可以同時對累積流量、瞬時流量或流體溫度、內部壓力等參數進行測量及分析、調節(jié)。
1、流量計的工作過程
流量計通常由渦輪(機械部分)、磁電轉換器、放大機構(電子部分)等組成。
當流體流經安裝在管道里的渦輪,即流經渦輪葉片與管道之間的間隙時,由于流體的沖擊作用,使得渦輪圍繞軸心發(fā)生旋轉。同時實驗表明,渦輪旋轉的轉數與介質流體的體積流量呈現近似的線性關系。再將渦輪的旋轉通過磁電轉換器變換成相對應的電脈沖信號,以此脈沖信號經電子放大機構放大后,即可輸送顯示儀表進行多參數物理量的指示。
由前可知,在測量范圍內,渦輪的轉速與流量成正比,而信號的脈沖數則與渦輪的轉速成正比。所以,當我們檢測出信號脈沖總數以后,除以儀表常數ξ(次/升),便可計算得到該段時間內的介質流體總量V(升),即:
V=N/ξ(L)   (1)
舉一例:流量計ξ為180次/L,用儀器測出在10min內儀表計算得的脈沖數為7200次,則10min內管道中流過流體的總量為:
V=N/ξ=7200次/180次/L=40L
2、渦輪旋轉的基本原理
流量計主要組件包括:導流體組件、渦輪組件、殼體、磁電轉換器和放大機構等。通過對流體流過管道及渦輪結構的分析,我們可以得出,當流體沿管道的軸線方向流動而沖擊渦輪葉片時,便有與流量Q、密度φ和流速V的乘積成比例的力作用于葉片上,推動渦輪旋轉。
如圖2所示,由于渦輪對流體是作相對運動,如果渦輪旋轉的圓周速度V=w·r與軸線平行的流速與葉片的夾角為θ,流通面積為A,則介質流速V=Q/A,則推動渦輪旋轉的力矩M可用下式表示:
M=K1·tgθ·rρQ²/A–ωr²ρQ   (2)
式中:K1——與流量計結構尺寸、流體質量、狀態(tài)有關的參數;r——平均半徑,常取葉片寬度1/2到中心的距離。
由(2)式可知,力矩M除與流量Q有關外,與流體介質密度ρ、流動狀態(tài)與流向等多個因素有關。
在渦輪旋轉時,除推動渦輪旋轉的轉動力矩M外,還同時存在阻礙渦輪旋轉的阻力矩,其中包括:介質粘度對渦輪摩擦引起的阻力矩M1,軸承摩擦引起的阻力矩M2,磁電轉換器引起的磁電反應阻力矩M3。根據動量矩守恒原理,渦輪的運動方程式可以用以下函數關系式表示:
Jdω/dt=M-M1-M2-M3   (3)
式中:J——渦輪的轉動慣量;dω/dt——渦輪的角加速度。
由(3)式可知,當dω/dt為零時,渦輪以角速度ω作勻速轉動;當流量發(fā)生變化時,dω/dt≠0,渦輪將作加速旋轉運動,經過一段時間后,隨著流量的穩(wěn)定,渦輪又會達到新的力矩平衡狀態(tài),即dω/dt又等于零值。就是說,渦輪將以另一新的角速度勻速旋轉,以適應新的流量,并出現了新的穩(wěn)定狀態(tài)。
通過分析和計算可知,在dω/dt=0時,渦輪轉動角速度ω與體積流量Q有如下式的近似關系:
ω=ξQ-ξa   (4)
式中:a——與流量計結構參數、流體介質、流動狀態(tài)有關的系數;ξ——流量計轉換系數,當介質流量大于某一數值時,在一段區(qū)間內可以近似看作為一常數,有時也稱為儀表常數。
儀表常數ξ是流量計重要的特性參數,由于流量計是通過磁電轉換器將角速度ω轉換成相應的脈沖數,因而我們可以把ξ看成是單位體積流量Q通過流量計時,轉換器輸出的脈沖數(脈沖數/升),故也稱為流量系數。流量計作為產品出廠時,生產單位則是測取測量范圍內的轉換系數平均值作為儀表常數,因而可以認為流體總量V與脈沖數N的關系,如(5)式所示:
V=N/ξ   (5)
3、磁電轉換器的工作過程
磁電轉換器工作時如圖3所示。
當流體通過渦輪葉片時,渦輪5將發(fā)生旋轉運動,葉輪片4將周期性切割磁鋼1而產生磁力線3,從而改變通過線圈2的磁通量,根據電磁感應原理,在線圈內將感應出脈動的電勢信號。不難理解,脈動電勢信號的頻率與渦輪旋轉的角速度ω成正比,即與被測介質的流量Q成正比。通過放大機構(電子部分)將上述脈沖信號放大到1V左右脈沖電壓,傳送給顯示儀表,即可顯示出被測介質的流量數據。
4、流量計顯示儀表工作原理
根據我們對流量計工作原理的分析和探討,得知流量計輸出的信號是電脈沖數,因此儀表就是將單位時間的輸出脈沖和輸出脈沖的總數轉換成瞬時流量和流體總量,并把以上數據進行分析后通過數字量顯示。因而儀表的組成可以用圖4所示的方框圖表示:
4.1 瞬時流量指示
瞬時流量指示的實質,就是對瞬時頻率、脈沖信號的指示,是將信號處理后的頻率、脈沖線性地轉換成直流電信號而指示相應的流量參數。如果是模擬儀表,標尺常以頻率(Hz)數值分度,指示的頻率值f除以流量計儀表常數ξ就能夠得到瞬時體積流量值Q。如圖5所示的頻率瞬時指示原理方框圖。
經過整形后的輸入頻率(脈沖)作用于計算電路的輸入端T,使電路中交替出現截止或導通兩種狀態(tài),放大器輸出端脈沖波形被整形,與T的波形相反,當放大電路出現截止狀態(tài)時,電源E通過外圍電路(或集成內部)在儲能電容C中預存電荷;當放大電路出現導通狀態(tài)時,C預存的電荷通過外圍電路(或集成內部)迅速釋放。就這樣輸入的頻率(脈沖)經過電子電路改變?yōu)榕c之相對應的電流信號。電路里的電流指示儀表4即刻顯示該計量電流值I的多少,I=q/T,而q=C·E,f=1/T(q為一個脈沖周期電容所充電荷量;C為電容量;E為電源電壓值;f為充放電頻率)。合并三式可得到公式(6):
I=C·E·f   (6)
由公式(6)可知,當電源電壓E和電容量C為常數時,電流I與輸入脈沖的頻率f成正比,當更改外圍電路(或集成內部)儲存電荷的電容C(1~n)參數或連接方式以及改變電路數據時,就可以得到不同介質的流量測量范圍。在有些流量計結構中,為了便于檢查指示儀表是否工作正常,在放大器輸入端設置有自檢電路裝置。它將振蕩器產生的恒定頻率脈沖信號送入后置電路,實現自動檢測工作正常與否的目的。4.2 總量積算
前述我們介紹了流量計工作原理,通常還要計量在一定時間范圍內,流量計流過介質的體積或質量的累積量,因此顯示儀表具有累積計算功能。下面我們根據流量計實際工況對一種累積值計算方法的實現進行分析。
圖6為一種應用除法方案進行累積計算的組成原理圖。
由圖6可知,此積算器構成中包括了整形、累積脈沖計數、系統(tǒng)設定、總量積算、軟件數據的控制等。其4個輸出端分別與四層波段開關的各層相連,通過軟件控制,組成了系統(tǒng)設定器。根據流量計系數ξ的值,可以在0~9999(其他參數也可以)之間任意選擇設定系數。
由放大電路機構輸出的脈沖信號,經整形處理后,成為具有一定幅值和能滿足前沿要求的脈沖信號,將此信號轉入換算電路機構,它每輸出一個脈沖信號便拖動計數電路機構統(tǒng)計一個數碼參數,同時軟件功能即可識別紀錄出一個數字量,表明已經有一個單位介質體積的流量流過流量計。此時換算電路單元輸出的信號直接改變觸發(fā)穩(wěn)態(tài)電路,使各計數參數值恢復到起始的“零”狀態(tài),重復此過程即完成了累積脈沖的積算,就是對累積流量介質的積算。
例如:口徑為80mm的流量計,流量系數ξ為16.25脈沖/升,通過軟件將系數設定分別置于1、6、2、5,則每當計數器收到1625個脈沖信號的瞬時,軟件操作發(fā)出指令并輸出一個固定頻率信號,使電路狀態(tài)發(fā)生變化,使計數電路結構統(tǒng)計一個計量單位,從而實現了逢K進一的累計運算,顯示儀表就能夠顯示出流體介質總量。
通過上例分析可知,如果流量計輸送到顯示儀表的脈沖總數為N,經換算后,送到總量積算器的脈沖數為Nc,則流體介質計量總量為:
V=N/ξ=N/ξ·10m/10m=N/K·10m   (7)
式中:K為設定系數,(K=10m·ξ);m為整數。
本除法方案設定系數的方式較為簡單,穩(wěn)定性比較好,電路容易實現,可以直接將流量系數ξ輸入軟件中,控制系數設定器,積算器就可以逢K進一,顯示儀表指示出流體介質總量。
5、結束語
本文對流量計和儀表的工作原理進行了分析,總結了其工作過程。重點對參數設定方法、電路組成及作用等進行了說明。文章對測量不同介質狀態(tài)下選擇流量計以及使用方法和過程調試具有一定指導意義。